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ABSTRACT 

The new coronavirus (COVID-19) outbreak in 2019 was one of the most significant 

crises, as the World Health Organization (WHO) declared it a public health emergency of 

international concern. Researchers across the globe are utilizing various models to predict 

virus outbreaks, make informed decisions, and implement effective control measures. 

Simple statistical and epidemiological methods have garnered significant attention from 

both researchers and authorities. A primary challenge in controlling the spread of 

COVID-19 has been the shortage and limited availability of medical tests for detecting 

and identifying the virus. To mitigate this issue, several statistical techniques have been 

developed to provide partial solutions. In response to the medical challenges posed by 

COVID-19, a broad range of ِ Artificial Intelligence (AI) systems, frameworks, and tools 

that leverage Machine Learning (ML) and Deep Learning (DL) have been proposed. 

These technologies are particularly suited for developing effective COVID-19 diagnostic 

solutions due to their ability to recognize and predict patterns in large and complex 

datasets 

COVID-19 diagnosis.  machine learning;  deep learning;  convolutional neural network.
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INTRODUCTION 

At the end of 2019, a new virus from the coronavirus family, named COVID-19, emerged 

in Asia and spread globally, causing a new wave of respiratory infections. By March 

2020, the World Health Organization )WHO( had classified it as a pandemic and declared 

it a "Public Health Emergency of International Concern"[1]. As of February 2023, the 

illness had affected 673.3 million individuals worldwide, with 6.8 million confirmed 

deaths [2]. One of the most common methods for identifying coronavirus is the Reverse 

Transcription Polymerase Chain Reaction (RT-PCR), which uses respiratory samples and 

provides results within a few hours to two days. However, this diagnostic test is both 

time-consuming and costly. Therefore, developing new viral detection techniques 

remains a significant challenge for researchers, especially as a definitive medical 

treatment has yet to be discovered. Previous studies have employed machine learning and 

deep learning architectures to detect COVID-19 in lung CT and X-ray images. Yan et al. 

[3] aimed to create a mathematical modeling strategy based on advanced interpretable 

machine learning algorithms, identifying the most discriminative indicators of patient 

survival. Nasiri et al. [4], on the other hand, used a pre-trained DenseNet169 network to 

extract features from X-ray images via analysis of variance (ANOVA) and classified 

them using eXtreme Gradient Boosting (XGBoost). Similarly, Öztürk et al. [5] developed 

a technique for analyzing CT and X-ray data with ML algorithms to detect viral 

outbreaks. They also classified the images into six categories, including coronavirus 

images, using a two-stage data augmentation approach. Saha et al. [6] proposed a 

convolutional neural network (CNN) architecture to detect COVID-19 in radiographs by 

concatenation. They developed a multi-label algorithm to distinguish between standard 

X-ray images, viral pneumonia, and COVID-19. Bhargava et al. [7] provided an 

automated learning method to assess nine datasets and identify COVID-19. Absar et al. 

[8] used the SVM machine learning algorithm to diagnose COVID-19 based on chest 

radiograph images. In Islam et al. [9], Contrast Limited Adaptive Histogram Equalization 

(CLAHE) was applied to CT images to enhance image quality. They then created a new 

convolutional neural network model using 2482 CT images to extract 100 key features, 

which were subsequently applied to various machine learning methods. Finally, they 

recommended an integrated approach for categorizing COVID-19 medical images. Shan 

et al. [10] deployed a deep network to identify COVID-19 affected regions using CT 

images for deeper understanding. Kogilavani et al. [11] developed neural network models 

like DenseNet121, NASNet, EfficientNet, and Xception to detect COVID-19 using lung 

images. Mishra et al. [12] reviewed various deep CNN-based methods for identifying 

COVID-19 in chest CT images. Rehman et al. [13] proposed a deep learning 

methodology using radiographs to diagnose approximately 15 chest diseases. 
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Aboughazala et al. [14] built a network to classify COVID-19 images from radiographs 

into negative or positive cases. Conversely, Diaz-Escobar et al. [15] compared and 

evaluated the efficiency of different methods for detecting COVID-19 using lung images 

and pre-trained deep learning architectures such as VGG19, InceptionV3, Xception, and 

ResNet50. Malik et al. [16] trained a combination of VGG-19 and CNN on a publicly 

available benchmark database to recognize respiratory diseases from chest radiographs. 

Rahman et al. [17] used a deep network and a graph of oriented variations framework to 

classify the data into multiple lung disease types, in addition to normal cases, and to 

identify the most discriminating anomalies in anterior lung radiograph images. Sarkar 

[18] utilized Vision Pro Deep Learning, a deep learning tool from COGNEX, to classify 

chest X-rays from the COVIDx dataset. Vision Pro DL is used across various industries, 

including life sciences and factory automation. Saood et al. [19] used two well-known 

deep network models, U-NET and SegNet, for data classification. SegNet is described as 

a network for image segmentation, while U-NET is a tool for medical segmentation. 

Moreover, multi-class segmentation was utilized with both networks to identify the type 

of chest infection and to differentiate diseased lung cells from healthy ones using binary 

components. In the context of diagnosing and determining COVID-19 patients through 

chest radiographs, Hassantabar et al. [20] developed a three-supervised learning 

architecture, while Imani [21] created convolutional filters that reduced contextual 

features. Both lung X-rays and abdominal CT scans were employed to extract shape and 

textural information as contextual feature maps. Notably, chest CT images are beneficial 

even before symptoms appear, as they reliably detect abnormal features that may not be 

visible in early-stage lung X-rays. Combining the features of these two types of images 

enhances classification accuracy. Various methods have been developed to distinguish 

COVID-19 from other lung infections using X-ray and CT images, with numerous deep 

learning architectures employed. Khalifa et al. [22] proposed a deep learning 

methodology that combines deep transfer learning with generative adversarial networks 

(GAN). They also used GAN to increase the sample size for training deep transfer 

models, specifically AlexNet and GoogleNet, to detect pneumonia from lung X-rays. 

Ibrahim et al. [23] used a combination of X-ray and CT images to train a multi-

classification model to detect lung cancer, pneumonia, and COVID-19, expanding the 

dataset by linking lung X-rays and CT images, which improved classification accuracy. 

They also considered four distinct deep learning architectures during model training. 

Despite promising results, these methods still have limitations. The first limitation, noted 

in articles [11, 17, 18, 20, 22], is the infrequent consideration of the heterogeneity 

between various imaging techniques [5, 21, 23]; most studies used chest X-rays or CT 

scans independently for diagnosing lung disorders. To address this issue, a combined 
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learning process using both CT and X-ray scans can be employed. The second limitation 

identified in these studies [5, 13, 19, 20] is that the models were trained in two stages: 

initially using various augmentation techniques to enhance the dataset and subsequently 

training the deep-learning models with both original and augmented images. This two-

stage process can be simplified by developing a deep learning architecture capable of 

recognizing COVID-19 in a single learning operation. The third limitation found in these 

studies [10, 11, 19] is that they typically diagnosed only two types of lung diseases, 

whereas multiple lung ailments, such as lung cancer and COVID-19, exist. To address 

this, a deep learning arxchitecture that diagnoses various lung diseases using a 

combination of lung X-ray and CT images is proposed. 

1. Literature Review 

 

Table 1 :  Applications of ML for resolving some COVID-19 issues 

Author Year Dataset Method 

[25].el 2020 COVID-19 Time Series 

dataset 

LR,LASSO, Support Vector Machine 

(SVM), ER 

[26].el 2020 CT Image dataset Residual Neural Network 

[27].el 2020 COVID-19 data of various 

countries 

Support Vector Regression (SVR) 

[28].el 2020 COVID data of 5 countries MLP, ANFIS 

[29].el 2020 COVID-19 dataset of 1,182 

hospitalized patients 

SVM 

[30].el 2020 COVID-19 patients data of 

Massachusetts, Georgia, 

and New Jersey. 

GB (Gradient Boosting) algorithm 

[31].el 2020 COVID-19 Patient Dataset ML algorithm 

[32].el 2020 COVID-19 Indian Dataset Support vector Kuhntucker model 

[33].el 2020 COVID-19 data from 

Mindstream-ai 

ANN 

[34].el 2020 COVID-19 Data Logistic Model + Prophet method 

[35].el 2020 CT dataset AD3D-MIL algorithm (A Deep 

3D-Multiple Instance Learning) 

[36].el 2020 JHU CSSE database - 

[37].el 2020 Two COVID-19 chest X-ray 

datasets 

KNN (K Nearest Neighbor) + 

Manta-Ray Foraging 
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Optimization (MRFO) 

[38].el 2020 COVID-19 patient data XGB (Extreme Gradient Boosting), 

Decision Tree (DT), Random Forest 

(RF), SVM, GBM (Gradient 

Boosting Machine) 

[39].el 2020   

[40].el 2020 COVID-19 time series 

dataset 

Ensemble Empirical Mode 

Decomposition (EEMD) + ANN) 

[41].el 2020 CT images dataset CNN, RF, NB, SVM, as well as JRIP 

[42].el 2020 COVID_CT dataset Enhanced KNN 

[43].el 2020 COVID-19 pandemic data NN (Neural Network) 

[44].el 2020 Corona virus dataset LR, Naive Bayes (NB), Linear 

Regression (LiR), KNN 

[45].el 2020 Hungary dataset of 

COVID-19 data 

ANFIS (Adaptive Network-based 

Fuzzy Inference System) & MLP-

ICA (Multi Layered Perceptron-

Imperialist Competitive Algorithm) 

[46].el 2020 COVID-19 patients data k-Means algorithm 

[47].el 2020 COVID-19 patients data Support Vector Regression (SVR), 

RF 

[48].el 2020 COVID-19 patient blood 

sample data 

KNN, LR, RF, SVM 

[49].el 2020 COVID-19 Synthetic dataset SVR 

On the basis of previous literature Table 1, classification tasks for COVID-19 were 

different in terms of aspects related to the accuracy of results, in spite of the differences 

of the overall performance. Previous literature was solely focused on accuracy 

enhancement, time reduction or even overall performance improvements for the 

classification. Furthermore, differences exist in previous literature with respect to 

classification techniques, phases and classification procedures. On the one hand, the 

developed COVID-19 classification techniques in the analyzed studies provide three 

COVID-19 classification tasks (i.e. binary classification, multi-class classification and 

hierarchical classification). On the other hand, Ref. [50] indicated that all relevant label 

distribution in a classification problem changes, which explains why four classification 

types can be performed in the AI techniques, namely, binary, multi-class, multi-labelled 

and hierarchical classifications. Multi-labelled classification is described in Ref. [50] as 

follows: ‘the input is to be classified into several of non-overlapping classes. When the 

learning task is document topic classification, multi-labelling is often referred as multi-
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topic classification. In the multi-labelled classification problem, categories are isolated 

and their relations are not considered important.’ However, no study has provided multi-

labelled classification for the detection of COVID-19 medical images. This is considered 

the first research gab identified in the literature reviewed. Furthermore, the growing 

number of classification techniques developed for COVID-19 is considered a major 

problem for health organizations and other treatment centers. The reason behind that 

these medical organizations that aim to adopt classification techniques for detection of 

COVID-19 will be encountered a challenge on how to select the best and an appropriate 

classification technique that would provide an accurate and rapid detection of COVID-19 

medical images. Apart from the disparity in COVID-19 classification techniques in terms 

of their overall performance, all results confirm the difficulty of making a decision to 

choose a better technique amongst others. In the analyzed studies, there is no evidence or 

proposed solution confirmed to be superior over the rest. Moreover, although multi-

labelled classification AI techniques used in the detection of COVID-19 have not been 

developed, they might be developed in the near future. In the case of this development, 

another important question will arise: ‘which classification technique is appropriate for 

such purpose?’ According to the included final set of articles that met the search query 

used, no study has provided a comprehensive evaluation and benchmarking solution for 

AI classification techniques (i.e. binary, multi-class, multi-labelled and hierarchical 

classifications) used in the detection of COVID-19 medical images. This is considered 

the second research gab identified in the literature reviewed. Ref. [51] recommended that 

an evaluation and benchmarking solution for multi-labelled and/or hierarchical 

classification techniques could be beneficial and essential to determine which AI 

technique is appropriate amongst others. To explain the detailed solution for the 

identified gabs, two problems should be discussed: ‘what are the evaluation criteria used 

in each classification type (i.e. binary, multi-class, multi-labelled and hierarchical 

classifications), and what are the calculation processes of these criteria? Each of these 

classification methods has its own evaluation criterion. The calculation procedure for 

each evaluation criteria is completely different from each classification type [51,50]. 

Thus, the evaluation and benchmarking procedure will be different within each 

classification method (the evaluation criteria and calculation procedures are specified in 

detail in the methodology section). This study attempts to fill the gap in the evaluation 

and benchmarking of different classification types that will be used in the detection of 

COVID-19. The proposed solution shall assist the administrations of health organisations 

to evaluate and benchmark COVID-19 AI classification techniques. It can also ensure 

that the selected classification techniques meet all necessary requirements. OS Albahri et 

al [24]  
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3.Background technology 

3.1. Artificial neural network background )ANN( 

3.1.1 AlexNet Architecture 

AlexNet CNN Architecture In the outlined work, AlexNet CNN's deep learning 

architecture is used for each image class (one for X-ray and the other for CT). The 

elements of the architecture are explained in Fig. 2.  

The suggested system employs five convolutional layers with rectified linear units 

(ReLUs) and three max-pooling layers: In the First Convolutional Layer, Filters: 96, 

Kernel Size: 11×11, Stride: 

 4. In the Second Convolutional Layer, Filters: 256, Kernel Size: 5×5. In the Third and Fourth 

Convolutional Layers, Filters: 384, Kernel Size: 3×3. In the Fifth Convolutional Layer, Filters: 256, 

Kernel Size: 3×3. Each convolutional layer produces a feature map. The feature maps from 

the first, second, and fifth layers are combined with pooling layers of size 3×3 and a 

stride of 2×2. The system has 100 nodes and an eight-layer architecture, allowing for 

trainable feature maps, which means feature extraction processes occur at these levels. 

Fully connected layers (FC) are used to place these feature maps, and Softmax activation 

is used to calculate the classification probabilities. The dataset has only four classes, 

although the Softmax layer can provide classification for up to 1000 different classes. 

 

 

 

 

 

Fig.2. AlexNet convolution neural network architecture [3] 
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3.1.2 Convolution Layer 
 

This layer generates the feature maps that are used as input to classification layers. It 

includes a kernel to create the feature map as the output. Matrix multiplication and result 

integration are performed at every point on the input. The definition of the generated 

feature map is as follows 

𝑁𝑥
𝑟 =  

𝑁𝑥
𝑟−1− 𝐿𝑥

𝑟

𝑆𝑥
𝑟 + 1 ; 𝑁𝑦

𝑟 =  
𝑁𝑦

𝑟−1− 𝐿𝑦
𝑟

𝑆𝑦
𝑟 + 1                                                                   (1)   

[4] 

Where (Nx, Ny) is the width and height of the output feature map of the last layer and 

(Lx, Ly) is the kernel size, (Sx, Sy) that defines the number of pixels skipped by the 

kernel in horizontal and vertical directions and index r indicates the layer, i.e., r = 1. 

Convolution is applied on the input feature map and a kernel to get the output feature 

map that is defined as: 

𝑋1(𝑚. 𝑛) = ( 𝐽 ∗ 𝑅)(𝑚. 𝑛)                                                                                            

(2)   [4] 

 X1 (m, n) expresses a feature map with two dimensions, m and n. R is the kernel of 

size (Lx, Ly) and feature map input J. To illustrate the convolution between J and R, use 

*. Convolution is expressed as the following: 

𝑋1(𝑚. 𝑛) = ∑ ∑ 𝐽(𝑚 − 𝑝. 𝑛 − 𝑞)𝑅(𝑝. 𝑞) 
𝑞=+

𝐿𝑦

2

𝑞=−
𝐿𝑦

2

𝑝=+
𝐿𝑥
2

𝑝=−
𝐿𝑥
2

                        (3)   [4] 

In the suggested framework, five CONV layers with a RELU layer are used to 

accurately train the dataset and extract the most feature maps possible from the input 

frames. 

 

3.1.3 Rectified Linear Unit (ReLU) Layer 

 

A RELU activation function makes the proposed network non-linear and applies to all 

the trainable layers. This layer appropriately considers the nonlinearities and is utilized 

with the final feature map generated by the convolutional layer. The non-linear gradient 

descent is covered using tanh(.)and the RELU activation function.Tanh (.)is expressed as: 
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𝑋2(𝑚. 𝑛) = 𝑡𝑎𝑛ℎ(𝑋1(𝑚. 𝑛)) =
𝑠𝑖𝑛ℎ(𝑋1(𝑚.𝑛))

𝑐𝑜𝑠ℎ(𝑋1(𝑚.𝑛))
= 1 +

1−𝑒−2∗𝑋1(𝑚.𝑛)

1+ 𝑒−2∗𝑋1(𝑚.𝑛)                  (4)   [4] 

Where X2(m, n) is a two-dimensional output feature map after applying tanh(.) on the 

input feature map X1(m, n), which is achieved after passing through the convolutional 

layer. 

The values in the final feature map are obtained after applying the RELU function as 

follows: 

𝑋(𝑚. 𝑛) = {
              0.     𝑖𝑓𝑋2(𝑚. 𝑛 < 0)

𝑋2(𝑚. 𝑛).    𝑖𝑓𝑋2(𝑚. 𝑛 ≥ 0)
                                                                    (5)   [4] 

In eq. (5), X (m, n) is produced by turning the negative numbers into zero, and it 

returns the same result when it receives a positive value. The RELU layer speeds the 

training of deep convolutional neural networks.  

 

3.1.4  Maximum Pooling Layer 

 

The proposed architecture includes a pooling layer after the first, second, and fifth 

convolution layers to reduce each frame's computational expense and spatial dimension 

for the deep learning framework. The pooling process typically selects the average or 

maximum value of each image slice. In the suggested work, maximum pooling is used 

because it yielded better outcomes. The use of the maximum pooling layer for 

downsampling the images on the activation output is illustrated in Fig. 3. 

 

 

Fig.3. Maximum pooling layer [5] 
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3.1.5 Dropout Layer 

The first two fully connected layers implement dropout to prevent overfitting. This 

technique effectively regularizes the training data by averaging multiple neural network 

models. The dropout layer reduces overfitting by randomly setting a fraction of input 

units to zero during training, which helps in creating a more robust model. 

In the proposed architecture, maximum pooling is used to generate feature maps by 

selecting the highest pixel value from each map, considering the convolutional layer 

kernel sizes and their stride factors. The output from the top layers is then connected to a 

1D feature vector through a fully connected layer. It is crucial for the output unit 

for the class label to be fully connected to the top layer to capture advanced training 

features. Figure 4 shows the regularization technique applied to the fully connected layers 

before and after using dropout. 

 

 

 

 

 

Fig.4. Fully connected layers (FC) before and after applying dropout [4] 

3.1.6 Deep feature concatenation 

Concatenating features is a valuable technique for combining many features to improve 

categorization. In this study, the proposed CNNs are used to extract X-ray and CT 

characteristics, and then the DFC is employed; as seen in Fig. 5, the classification 

descriptor is then formed by connecting these features: 

𝐹𝑖𝑛𝑎𝑙𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟 = 𝐹(𝐶𝑇) ∪ 𝐹(𝑋−𝑟𝑎𝑦)             (6)  [6] 

F (CT) denotes the features of CT images, and F (X-ray) is the features of X-ray images. 

 

 

 

 

 

Fig. 5. Deep feature concatenation architecture [6] 
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3.2. Covid-19 Diagnosis Using Artificial Intelligence: 

The synergy between AI and imaging in medicine is crucial for achieving precise 

COVID-19 diagnosis. The utilization of medical imaging techniques like Chest CT, 

which involves numerous slices, often requires a substantial number of medical 

radiologists for accurate COVID-19 symptom diagnosis. Consequently, many 

respiratory-related diseases exhibit morphological similarities[7]. The use of AI-assisted 

diagnostics, however, intends to speed up the procedure by offering quick and precise 

assessments to identifying COVID-19 from other lung conditions, like pneumonia. 

Figure 2.1. Role of AI in COVID-19 fight. [8]. 

3.3. Application of Machine Learning to the Diagnosis of COVID-19 

Approaches for machine learning (ML) are invaluable methods for predicting accurate 

results in various aspects. The Institute for AI, in collaboration with prominent research 

organizations, has released an open-source, regularly updated COVID-19 Open 

Research Dataset. This dataset continually compiles articles related to COVID-19, 

expediting novel research projects that depend on real-time data. Numerous research 

groups are diligently gathering data and devising solutions on a daily basis. 

ML focuses on developing intelligent applications that can learn from data and improve 

their accuracy without explicit programming. This is achieved through training 
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algorithms, which enable the system to identify trends and characteristics in data, using 

them to make accurate judgments and forecasts when presented with new data. 

The ML process involves several steps: 

 Definition and Preparation of a Training Dataset 

 Selection of an Appropriate Algorithm 

 Training the Algorithm to Produce the Desired Model 

 Utilization and Refinement of the Model 

Machine learning algorithms come in various types, including: 

 Supervised Machine Learning: Involves training the model on labeled data. 

 Unsupervised Machine Learning: Involves identifying patterns in unlabeled 

data. 

 Reinforcement Learning: Involves training the model through rewards and 

penalties based on actions taken. 

These types are illustrated in the accompanying figure. 

Figure 2.2. Overview of Machine Learning. 

3.4. Medical Imaging 

Another subset of deep learning is used in medical imaging applications, which classify 

COVID-19, cancer, and pneumonia-related symptoms. The ability to identify pneumonia using 
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chest X-ray and CT imaging is becoming more widely available, which is important for the 

detection of COVID-19 [13]. 

 

3.5. Covid-19 chest X-ray and CT classification: 

Regarding the classification of COVID-19 chest images, the disease can be readily 

identified through various classification models, yielding accurate results. Imaging is 

crucial for disease classification, especially for differentiating COVID-19 from similar 

conditions like cancer and pneumonia. Techniques such as transformation, normalization, 

resizing, and patching are employed on chest images to facilitate this process. Deep 

learning applications are used to assess the performance of the algorithms after 

configuration within the models. According to various studies, the classification method 

proves highly effective in COVID-19 detection. Don Sheng Ji's research outlines 

several phases in the virus detection process through X-ray imaging, including scaling, 

rotation, size adjustment, and position translation. 

Computed tomography (CT) imaging is essential for clinically diagnosing diseases. CT 

scans are used to analyze and identify images in detecting and evaluating COVID-19, 

enabling the determination of infection levels and its distribution throughout the body. 

Additionally, CT scans use transfer learning and additional neural networks for COVID-

19 identification, as depicted in Figure 2.3 . 

 

Figure 2.3. Positive COVID-19 CT Scan 
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4 Conclusion 

 

The COVID-19 pandemic has a tremendous impact on the life of people around the 

world, and the number of infected patients has considerably increased. COVID-19 

quickly gained a foothold, and nations, governments and scholars are attempting to 

address this worldwide crisis. Different medical tests are used in the detection of COVID-

19. Several studies have used X-rays and CT scans to support and reveal anomalies 

indicative of COVID-19. CT scan and X-ray tests are utilised as initial detection tools to 

evaluate the severity of COVID-19, monitor the emergency conditions of patients and 

predict disease progression. The growing developments of AI techniques have led to the 

challenges of choosing evaluation and benchmarking AI techniques and which technique 

is suitable for the diagnosis and classification of COVID-19 medical images. Thus, this 

study presented a systematic review of AI techniques in the detection and classification 

of COVID-19 medical images in terms of evaluation and benchmarking. The results 

showed that only 11 studies utilised AI techniques in detecting and classifying COVID-

19 with different case studies. However, this study proved that the process of evaluating 

and benchmarking of AI classification techniques (i.e. binary, multi-class, multi-labelled 

and hierarchical classifications), which could be used in the detection and diagnosis of 

COVID-19 medical image, is a critical gap of related literature. The challenges of such 

gap are discussed, and the process of evaluation and benchmarking of COVID-19 AI 

classification techniques is considered a multi-complex attribute problem. Thus, using 

MCDA is essential. As a potential future research direction, this study provided a detailed 

methodology for the evaluation and benchmarking of AI classification techniques used in 

the detection of COVID-19 medical images. Such methodology is presented on the basis 

of three sequential phases (i.e. identification, development and validation). 

 

 

5 Future works 

For future studies, incorporating other types of images such as PET and MRI 

alongside CT and X-ray images in the datasets, increasing the number of training epochs, 

and utilizing different architectures like GAN for classification and augmentation could 

improve the performance of the proposed model. Additionally, leveraging public media 

data to forecast illness cases and inform timely responses would also be beneficial 
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